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Refinement of crystal structures incorporating an extinction parameter in an approximation developed 
by Zachariasen has led to the experimental observation that some crystals show anisotropic extinction 
effects. A formalism is presented for refinement of anisotropic extinction coefficients for both extreme 
crystal types: Type I (extinction dominated by mosaic spread) and Type II (extinction dominated by 
particle size). For Type I crystals, an anisotropic rather than isotropic Gaussian mosaic spread distribu- 
tion function is assumed. For Type II crystals, the average particle shape is described as an ellipsoid 
rather than as a sphere. In each case, the six independent components of a symmetrical second-order 
tensor are added to the list of parameters refined in a conventional crystallographic least-squares pro- 
gram. Results on several data sets from both neutron and X-ray diffraction experiments indicate that 
anisotropy of extinction is often significant. The inclusion of such parameters is recommended in all 
least-squares refinements of extinction affected data. Furthermore the detailed study of the effects may 
be of some promise in the study of crystal texture inasmuch as the refined parameters are of a magnitude 
which suggests physical significance. 

Introduction 

Zachariasen (1967) has given a general treatment of 
secondary extinction and introduced some useful ap- 
proximations which allow the facile introduction of 
the extinction correction into calculation of Bragg in- 
tensities in crystal structure refinements. The use of the 
Zachariasen approximation has proved to be satisfac- 
tory in the analysis of a number of crystal structures 
(Zachariasen, 1968a) while Larson (1967), and Ibers 
(1968) successfully applied an earlier expression of 
Zachariasen (1963) in least-squares refinements of in- 
tensity data. For reference later in the paper, it is useful 
to summarize the Zachariasen treatment here. 

The integrated intensity of a diffracted beam is given 
by 

#~ = ~kY:l: (1) (Z-l) 
with 

and 

~k=JovA(lt)Q 

eZFK 2 23 
Q(X-ray)= -mjlYJ sin :20 

(2) (Z-2a) 

(3) (Z-2b) 

IFvK 2 23 
Q(neutron) = sin 20 • (4) 

Formulas (3) and (4) are valid if the structure factor 
F is expressed in electrons cell -~ for X-rays and cm 
cell -x for neutrons. The polarization factor K is equal 
to 1 for neutrons but is either 1 or cos 20 for the nor- 
mal and parallel components of polarization for X- 
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rays. The power equations (with appropriate boundary 
conditions) in the absence of absorption" 
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(5) (Z-4a) 

(6) (Z-4b) 

have a solution that depends on the crystal shape. 
(See, for example, Hamilton, 1957, 1963.) Zachariasen 
avoids the difficulty of solution of these equations in 
the general case by making three approximations: 

(1) The power diffracted in a direction e from a 
single domain for any crystal shape is given by 

and 

P (0 = JoW(~)~o{*(c) } (7) (Z-7, 8) 

1 
(o{a(e)} = -(1 +a(e)O (8) (Z-19) 

where [ is the mean path length in a single domain 
for the reflection in question. A similar approximation 
is made for the whole crystal. 

(2) The Laue form of the peak profile function may 
be replaced by a Poisson function. 

(3) The effects of absorption are accounted for by 
using in the extinction equations an effective mean 
path length, T, through the crystal that is obtained as 
follows 

T -  1 I ( T' + Tz) exp [-¢t(7"1 + T2)]dr (9) 
A(/0 

where dr implies integration over all diffraction paths 
in the crystal with all volume elements being given 
equal weight. 
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Zachariasen's final results may be summarized as 

~=~ky=JoQoplvA(lz)y (10) (Z-46a) 

y = { 1  +(2pz/p,)~o}-'/z (11) (Z-45) 

2 0 = f l Q 0 [ / + ( T - / )  {1 +(fl/g)2}-l/2] (12) (Z-46c) 

t =  2fj_/32. (I 3) (Z-46d) 

The quantity g is related to the width of the mosaic 
spread distribution. If primary extinction may be ne- 
glected (as is often the case): 

20=flQoT{1 +(fl/g)Z}-,/2. (14) (Z-48) 

For a spherical domain of radius r, 

L = i = ~ r / 2 ,  (15) 

and hence 

If fl>~g 

t =  ~-(r/2)~r/2. (16) 

20=gQoT (17) (Z-49a) 

and the extinction is dependent only on the mosaic 
spread parameter r /and not on the mosaic block size. 
For such a crystal, defined by Zachariasen as Type I, 
the mosaic spread parameter r / is  considerably larger 
than the natural width of the reflection from a single 
domain. 

If fl~g, 
)20 =flQ0 ~' . (18) (Z-49b) 

For such a crystal, defined by Zachariasen as Type II, 
the natural width of the reflection from a single domain 
is greater than the mosaic spread parameter. Since it 
is again the convolution of the two that matters, there 
is no dependence on the mosaic spread parameter. Real 
crystals may lie between the two extremes. Without 
measurements at different wavelengths, or except for 
the case of extreme anisotropy, it is impossible to 
distinguish between the two types on the basis of dif- 
fraction measurements alone. 

We have found in applying the Zachariasen correc- 
tion to several sets of data that there are pronounced an- 
isotropic effects. For example, the 0k0 reflections may 
be always undercorrected and the hOl reflections may 
always be overcorrected. It seemed desirable to include 
this effect in the calculation of the intensities and to 
refine appropriate ansiotropic extinction parameters in 
the least-squares refinements. 

Formulation of anisotropic extinction 

The Zachariasen formulation includes two parameters 
which describe the mosaic character of the crystal: 
f is a measure of the domain size; g is a parameter 
in a Gaussian mosaic angle distribution. A reasonable 
extension to anisotropy is to assume that the domain 
is no longer spherical but ellipsoidal and that the 
mosaic spread is no longer isotropic but is given by 

an anisotropic Gaussian function. In the formulation 
that follows, these are the assumptions that are made. 

The particle shape enters equations (Z-46) in two pla- 
ces, once in f, the mean path length in the domain, and 
secondly in L, the mean dimension in the domain in 
a direction lying in the plane of diffraction and per- 
pendicular to the incident beam. In the present for- 
mulation, we choose to assume that primary extinction 
is negligible; hence the effect of any anisotropy of 
particle shape on t will be unimportant. 

The particle shape may be described by the expres- 
sion for an ellipsoid: 

X ' W X = I ,  (19) 

where X are the coordinates relative to some axis sys- 
tem with metric G* and W is a second order metric 
tensor. The half-dimension through the center of the 
particle in a direction specified by a unit vector N is 

r(N) = (N'WN)-I/2 . (20) 

The mean length L for an ellipsoidal particle is given 
by 

7~ 
t±= 2 r(N).  (21) 

If we can determine the components of the tensor W, 
we may reduce it to a principal axis system by finding 
its eigenvalues and eigenvectors in a space of metric G. 
The appropriate equation for the eigenvalues is 

I W - A G I = 0 .  (22) 

The inverse square roots of the eigenvalues then give 
the half-lengths of the principal axes of the average 
ellipsoidal domain. 

The anisotropy of particle shape is thus introduced 
into equation (Z-48) by finding the vector N which 
lies in the plane of the incident and diffracted beams 
but which is perpendicular to the incident beam and 
calculating 

2f _z  ~r(N) r ( ~  (23) 
t =  32 3 2)~- -~ 2 

For each reflection, we thus replace r in Zachariasen's 
formulation by r(N) as calculated from (20).t 

* In our least-squares programs we normally use the metric 

cos 7 1 cos 
COS fl COS 0~ 

where 0~, ,8 and y are the unit-cell angles. 
"1" Implicit in this procedure is the assumption that the 'feed- 

back' term I in [the expression (Z-4) is negligible. In the 
anisotropic case these expressions are no longer symmetric. 

0Io = a(el)Io + o-(c2) 1 whereel and ~;2 are the (Z-4a) becomes: 

incidence and reflectance directions and a(~h) and a(e2) depend 
respectively on the particle sizes in the directions of N, and in 
the direction of a second vector n perpendicular to the diffracted 
beam in the plane of the incident and diffracted beams. As a 
result, extinction will also depend on the particle size in the 
direction of n. This dependence is small because Io~I, for 
crystals used in structure analyses. 
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The anisotropy of mosaic spread may be handled 
in the following way. Zachariasen assumes a Gaussian 
probability distribution in the angular parameter A: 

~,(~) = 21/2g exp ( -  2-g2~0 • (24) 

We introduce an anisotropic Gaussian 

~,(A,D)=IZI1/223/2 exp (-2~zD'ZDA 2) (25) 

where D is a unit vector (in a space with metric G) 
which is perpendicular to the plane which contains the 
incident and diffracted beams. The mosaic spread par- 
ameter in this plane is given by 

1 
r/(D) = 2~Zi)2- ( D ' Z D )  -1/2 . (26) 

The tensor Z may be diagonalized as was the tensor 
W to obtain the principal components of the mosaic 
spread probability function. The appropriate equation 
is IZ-AGI =0. The inverse square roots of the eigen- 
values divided by 27/: 1/2 are the principal components 
of the mosaic spread probability function r/l, r/E, r/3. 

We introduce the anisotropic mosaic spread par- 
ameters into equation (Z-48) by finding the vector D 
which is perpendicular to the plane of the incident and 
diffracted beams and calculating g(D)= (D'ZD) I/2. We 
could thus write (Z-48) as 

[ 2o =r(N) 2-1QoT 
L 1 + [ 2g(D) J J 

(27) 

Since each reflection will have a characteristic pair of 
vectors N and D associated with it, it becomes possible 
to refine simultaneously the components of W and Z. 
(This is not possible in the isotropic case for data taken 
at a single wavelength because of the degeneracy of r 
and g.) Our experience suggests to us however that 
this simultaneous refinement would not be a fruitful 
approach except in extremely anisotropic cases. We 
accordingly confine our discussion below to aniso- 
tropic Type I crystals: 

@@@@(!) ~ ° '  

q)(D@@(!)@© o o o o o c p o d )  tT ,~, @@@@(!) o o o d ; : ' o o o o  
®@@©@@(!) o o o o o c p o d )  
@@@(9@@ cpoo4;::,ooo 
@@@(9@ 
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Fig. 1. Idealized models for anisotropic extinction. For Type I 
anisotropy the mosaic spread parameter r/ is not the same 
around all directions D. The shapes of the individual mosaic 
blocks are irrelevant. For Type II anisotropy, the particles 
are ellipsoidal. The mean radius varies with the direction N. 
In real crystals, both effects may be present. Classification as 
types I, II or intermediate depends on the relative values of 
the parameters r/and L 

r(N)/2g(D)>> 1 (28) 

20=g(D)QoT (29) 

and anisotropic Type II crystals: 

r(N)/2g(O)< 1 (30) 

2o=r(N)2-~aoP, (31) 

with the realization (Zachariasen, 1969) that many 
crystals are likely to be intermediate in character. In 
Fig. 1, we illustrate schematically the two extreme types 
of anisotropic extinction. 

Introduction of anisotropic into 
least-squares refinements 

We have introduced both isotropic and anisotropic 
extinction refinement into our standard least-squares 
program (program LINUS, available on request). This 
is easy to do, but since the derivations of the deriva- 
tives are somewhat tedious and subject to error, we 
reproduce in Table 1 the necessary formulas. 

Scaling 
Because of the magnitudes of the quantities involved, 

we have found it convenient to scale ?, g, Wl~, and Z~ 
as follows. We work throughout with the quantities: 

7'=7x 10 4 , 

g' = g  x 10  - 4  , 

Z~j=Z,j x 10 -8 , (32) 

W~j = Wij x 22 x 10 -8 (with 2 in A). 

Then all the previous equations hold without change 
on replacing the unprimed quantities by the primed 
quantities. 

At the end of a refinement, we find that the following 
relations then hold: 

Isotropic 
Equivalent mosaic spread parameter 

r/= 5.8186/g' seconds. 

Equivalent spherical domain radius 

r=g'2.10 -4 (with 2 in /~) .  (33) 

Type 1 anisotropic* 
A~/2 = r/u(seconds) = 5.8186/Z~11/2 . (34) 

Type 2 anisotropic* 
A~/2=ru(cm) =2  (A) x lO-4/W'l, 112 . (35) 

Convergence 
We have found that refinement of an isotropic ex- 

tinction parameter always proceeds smoothly to con- 

* The principal axes of the ellipsoids may be interpreted in 
this way. 
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vergence, even starting from g = 0. Anisotropic Type I 
refinements usually are well behaved starting from 
Z~j = 0. Anisotropic Type II refinements often go bad 
if starting from Wij = 0I" or at any considerable distance 
from the correct value. We have always attained satis- 
factory results when we have first refined an isotropic 
parameter to convergence, then changed to anisotropic 
and continued. 

Nevertheless, we have found that certain procedures 
facilitate convergence, particularly when starting from 
zero, which in some sense is an infinitely bad first ap- 
proximation. Since the derivatives involve the value of 
g(D) or r(N), and since this may change markedly in 
one cycle of refinement, we have used the following 
partial-(or super fuU)-shift criterion: 

If 
I~W.I (or laZ.I) > {Wi,(old) 

then 

6w.  l Wu(new)= Wu(old)+ 1 + 2Wu(old)J JWu, (36) 

where J Wu is the indicated shift obtained from the 
least-squares equations. Furthermore, if the calculated 
shift would make the diagonal term negative, we make 
the new Wu or Zu equal to half the old one. When 
starting from far off the off-diagonal terms W~ or Zi3" 
may behave badly, but since they may be either pos- 
itive or negative, there is no condition such as that 
applied for the diagonal elements that completely pre- 
vents bad behavior. We have found useful an algorithm 

? The derivative OF2/OW, j is infinite for {Wtj}=0. When 
starting f rom {W, j}=0  (which we rarely do) we usually re- 
place (N'WN)-3/2 by 1 for the first cycle. 

that does not allow a large shift if there is an indicated 
change in sign of Wlj (or Z,j): 

if 
polo x (Pold + JP) < -- 0" 1 (37) 

we set instead 
Pnew =½Po lo  • 

An additional feature of our least-squares programs 
is the print-out of the extinction correction for each 
reflection if it is less than or equal to 0.99. We also 
print out the equivalent mosaic spread for the diagonal 
elements of Type I crystals, the equivalent particle size 
for the diagonal elements for Type II crystals, and 
both for isotropic refinement. 

Our data processing programs compute the neces- 
sary vectors N and D for each reflection. T is also 
calculated as 

T_~ _ !0g A (38) 
/z 

which is equivalent to the approximation made by 
Zachariasen, an approximation that can be poor for 
crystals with high absorption. Furthermore, in crystals 
with high absorption (/zR>0.5), and with large co- 
herently scattering blocks, the Borrmann effect and the 
corresponding modified values of / t  must be explicitly 
considered (Zachariasen, 1968b). If  the extinction re- 
finement is carried out to learn something about the 
mosaic character of crystals, it is thus best that crystals 
with low absorption be used. 

Experimental results 

Among a variety of compounds that we have studied 
recently by neutron and X-ray crystallography we have 

Table 1. Formula for ext&ction refinements 

(All symbols are defined in the Appendix) 
9, is a quanti ty which depends on the mean path  length, the polarization factors, the wavelength and the cell volume.  

F2 = k 2 FeZ y = F~2 y 

6F2 6F~2 
6k - Y  6k 

5F2 - Y (y2 + 1) JF~2 
JP  2 5P 

g for isotropic extinction 
g = (D'ZD) 1/2 for type 1 anisotropic extinction 

(N 'WN)- I /2 /2  for type 2 anisotropic extinction 
y = {1-gyFe2} -1/2 
F~=kFc  

F =  k e y  1/2 -~ Fky 1/2 

J F  JF~ - y l / 2  ak 6k 
J F  yl/2 JFe 
J P  - 2 ( y 2 + l ) .  j p  

Isotropic 
J F  2 1 
Jg -- 2 kZFc4y3y 

Type 1 anisotropic 
5F2 

17 k2Fc4yaTDiD$(D'ZD)-l /2{2- 30} 
5Z, j q- 

Type 2 anisotropic 

5 F 2  = _  1 k2Fcgy3yN~N~(N,WN)_3/2{2_riI}2 
6 W~j 4 

5F 1 
-- kFc3y5/2y 

Jg 4 

5F 1 
3Z, j 8 

k Fc3y 512 yDi Dj(D'ZD)-  1/2 {2 -- J~ } 

J F  
JW~ 

_ 1 kFe3yS/2yN~Nj(N,WN)_3/2{2_ ~tj}~. 
8 
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found several for which anisotropic extinction effects 
are important .  Some examples follow. 

Sin¢,~ anisotropic extinction is not  necessarily the 
same for symmetry related reflections, we have aver- 
aged only observations for reflections related by 
Friedel 's  law when data corresponding to more than 
one asymmetric  unit in reciprocal space had been col- 
lected. 

B12P2 
This rhombohedra l  structure has been studied by 

La Placa (1968) who has collected a nearly complete 
hemisphere (~ of all reflections out to sin 0/2 = 0.7) of  
very accurate diffraction data from a spherical crystal 
with low absorpt ion (/z=7.313 cm -t) on a General  
Electric-Datex automatic  diffractometer. Isotropic, an- 
isotropic Type I, and anisotropic Type II models were 
refined. The refinements converged (for 512 reflections, 

131 of which were independent)  with R values as indi- 
cated in Table 2 together with the final values of  the 
refined extinction parameters.  Using an R ratio test 
(Hamil ton,  1965), the improvement  on going to an- 
isotropic extinction is significant. There is little dif- 
ference in agreement between the Type I and Type II 
refinements, a l though the Type I refinement gives a 
slightly better result. To confirm the consistency of 
the results, the intensities of the 101 and 202 reflections 
were measured as a function of rotat ion around the 
scattering vector. With the extinction parameters  de- 
termined from the full data set, intensities were calcu- 
lated for the 101 and 202 reflections as a funct ion of 
the rotational  angle c~. At low values of 20, the vector 
N which is relevant for Type II extinction lies nearly 
parallel to the scattering vector and thus varies little 
with rotation around this vector. Thus little variat ion 
in intensity (for a spherical crystal) is indicated if  

Table 2. Anisotropic extinction in X-ray data for  B12P2 

Crystal data: rhombohedral a= 5.248 .~, cos ~.=0.3499 
Worst extinction: FobsZ/Feaae2=0"53; v= 5 x 10 -4 mm3; 2=0"7107/~ 

Type I (unconstrained) 
Z~j' 

11 22 33 12 13 23 
6.4 (13) 1.7 (8) 4.3 (10) 1.8 (9) 1.0 (7) 1.0 (8) 

Type II (unconstrained) 

22 
0"32 (7) 

11 
0.32 (7) 

Principal axes and directions 
(r/,) Direction cosines* 

2.4" -0.86 0.12 0.50 
3.1" -0.51 -0"09 -0.85 
5.7" -0.06 -0.99 +0.14 

Type I (constrained) 

11 
4"1 (7) 

Wtj" 
33 12 13 

0"18 (4) 0.19 (5) 0.16 (4) 

Principal axes and directions 
(r~) Direction cosines* 

1.28/t 0.81 0"59 -0"05 
1.56/t 0.52 - 0.67 0.53 
2.47/1 - 0.28 0.45 0-85 

Zij' 

23 
0"9 (4) 

Principal axes 
( r / ~ )  Directions of axes 
3.16" l to threefold axis 
3.16" _k to threefold axis 
3.19" II to threefold axis 

R index data (based on F2) 
Rw n-m 

Isotropic 0-088 495 
Type I 0.0750 490 
Type II 0.0752 490 
Type I, constrained 0"0760 494 

* Direction cosines in this and the following Tables are given relative to an orthogonal axis system with directions parallel to 
a ~', b and a* x b. 

22 33 12 13 23 
4" 1 4" 1 1.4 (6) 1 "4 1 "4 
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Type II extinction is dominant. This belies the ex- 
perimental facts in this case. On the other hand, the 
vector D which is relevant to Type I extinction is per- 
pendicular to the scattering vector and rotates by 2to 
with ~. Calculation of the intensity with the refined 
parameters from the full data set shows remarkably 
good agreement with the observations for the 202 and 
101 reflections. The results for the 101 reflection are 
shown in Fig.2. We conclude that the extinction in 
this case is better described as Type I than as Type II. 
The fine structure shown for the observed values in 
Fig.2 cannot be reproduced by an ellipsoidal correc- 
tion and suggests that the ellipsoidal model is but a 
first approximation to the truth. 

One might expect that the extinction ellipsoid would 
have the point group symmetry of the crystal. This 
expectation does not generally appear to be exactly 
fulfilled, although the agreement is sometimes close. 
In this example, the expected rhombohedral symmetry 
is not obtained. To further test the significance of the 
deviation from trigonal symmetry, a refinement was 
carried out in which the tensor was constrained to have 
trigonal symmetry. The condition is that ZI~ = Z22 = Z33 
and Zn=ZI3=Z23. The resulting values are Z;I =4.1 
and Z;2 = 1.4. The weighted R value is 0.0760, a value 
which is significantly worse than that for the uncon- 
strained refinement by the ratio test (Hamilton, 1965).* 

The ellipsoids which describe the anisotropy of r/ 
are conveniently illustrated by the standard computer 
routines for illustrating thermal vibration ellipsoids. 
In Fig. 3 are illustrated the elliposids 

(X'Z-xX) = 1 

for the three refinements described above for BlzP2. 

Bis-(2-amino-2-methyl-3-butaneoximato)nickel(II)- 
chloride monohydrate 

For monoclinic crystals of this compound, a set of 

* A further constrained refinement was carried out, based 
on only the data from the 101 reflection. This resulted in param- 
eter values Zl1=2"5 and Z l z = - I ' 5 .  The determinant of 
Z was nonpositive, indicating that the data (from one reflec- 
tion in this case) were not sufficiently good for the refinement of 
physically meaningful quantities. 

2120 neutron diffraction data was refined with both 
Type II anisotropic and isotropic extinction correc- 
tions (Schlemper, La Placa & Hamilton, 1969). The 
results are presented in Table 3. The extinction is seen 
to be not significantly anisotropic. 

Table 3. Extinction in a nickel complex (see text) 

Worst extinction: Fobs2/Feale 2 = 0-29 
v=28.16 mm 3 2=0.7107 A 

Isotropic 
g '= 1.74 (5) 
q = 3.35" or r = l'9p 

Type lI Anisotropic 
t/1 = ?/Z =//3 = 1 "9/.t 

R index data (based on F2) 
R R w  

Isotropic and anisotropic 0-055 0.086 

Hydraz&ium sulfate 
The extinction in the neutron diffraction study of 

this compound (Jonsson & Hamilton, 1968) was so 
severe that it was initially very difficult to locate the 
hydrogen atoms in an (observed- heavy atom) synthesis 
from the neutron data before an extinction correction 
was applied. An isotropic extinction correction allowed 
a structure solution and satisfactory refinement. Fur- 
ther improvement was however obtained when the ex- 
tinction was allowed to be anisotropic. There was a 
very significant drop in the value of the weighted 
agreement index Rw. The Type II refinement gave a 
slightly better value for Rw. Refinements constraining 
the extinction parameters to orthorhombic symmetry 
gave significantly worse results with agreement indices 
halfway between the isotropic and unconstrained an- 
isotropic results. The constrained and unconstrained 
ellipsoids for the Type II extinction refinements are 
more nearly alike than those for the Type I refinements. 
This fact and the fact that the Rw value is somewhat 
better lead us to conclude that the Type II model 
(particle size dominated) is most appropriate for this 
crystal. If so, the unusually large domain size of 22/t 

i 1 I I I I I I I ] 
I 

360  " " r Q ' , .  " " 

320 

300 - ] 
TYPE I 
TYPE I CONSTRAINED 
TYPE "I'i" 

• EXPERIMENTAL POINTS BI 2 pz(i Oi ) 

I I I I I I [ I I 
0 4.0 80 120 160 200 240 280 ..320 0 

ANGLE OF ROTATION a 
Fig.2. Observed and calculated intensities for the 10l reflection in B12P2 as function of rotation around the diffraction vector. 

The parameters used in the calculations are based on least-squares refinement of a general set of reflections. 
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b 

8 sec 

I 

a a  

TYPE I, SMALL DATA SET 

b 

8 sec 

TYPE I CONSTRAINED 

sec ,a / 8.O/z , a  

(~ . .  ~ 

TYPE I. LARGE DATA SET TYPE n" 
Fig. 3. Ellipsoids describing extinction for B12P2. The principal 

axes are r.m.s, mosaic spread parameters r/ in seconds for 
Type I and r.m.s, mean dimensions in microns for Type II. 
In the constrained refinement, rhombohedral symmetry was 

, assumed for the tensor. 

indicates that primary extinction is probably impor- 
tant, and colffinement of the model to secondary ex- 
tinction is not physically reasonable. 

The pertinent quantities are given in Table 4, and 
the extinction ellipsoids for the four  refinements are 
illustrated in Fig. 4. 

A set of  X-ray diffraction da ta  on the same com- 
pound,  but  f rom a different crystallization batch, was 
also refined with a Type II  extinction model.  The re- 
sults indicated a much smaller degree of  crystal per- 
fection (see Table 5 and Fig. 4). 

~-Deutero- and ~-protooxalic acid dihydrate* 
The X-ray da ta  on the regular  and the deuterated 

forms of oxalic acid dihydrate were collected by Dela- 
plane & Ibers (1969). Fo r  both  structures the results 
of  the initial refinements were disappointing, as agree- 
ment  factors remained at about  15% (Table 10). In- 
t roduct ion of  an  isotropic extinction paramete r  in the 
refinements led to a marked  improvement .  Neverthe- 
less, the agreement  factors were still larger than  anti- 
cipated f rom a compar ison of  the intensities of  sym- 
metry-related reflections. Examinat ion  of  the structure 
factor  list revealed tha t  reflections with k = 0 for both  
compounds  were generally undercorrected,  while other  
reflections appeared to be overcorrected. A n  a t tempt  

* Called a-DOX and a-POX, respectively. 

Type I 

Unconstrained 
Constrained 

Type II 

Unconstrained 
Constrained 

Table 4. Anisotropic extbwtion #~ hydrazinium sulfate (neutron data) 
Crystal data: orthorhombic, a = 8.251, b = 9.159, c= 5.532/~ 

Worst extinction: Fobs2/Feale2=O'12; v=3"6 mm3; 2= 1"073 A 

Z~ 1" 
11 22 33 12 13 

470 (59) 275 (52) 96 (26) --56 (19) - 7 2  (16) 
463 305 118 0 0 

Principal axes and directions 

Qlt> Direction cosines constr.* 
0.25" 0.89 - 0.36 - 0.27 0.27" 
0.33" 0.44 0.82 0.37 0.33" 
1.22" 0.09 -0.45 0.89 0.54" 

0"00563 (87) 
0"00535 

W~j' 
0"00222 (30) 0"00233 (30) --0"00091 (21) 0"00029 (15) 
0"00173 0"00251 

<r~> 
14u 
19/z 
32~ 

Principal axes and directions 
<tO 

Direction cosines constr.* 
-0"95 +0.28 -0.16 15/t 
-0 .30 --0.60 +0.74 21# 
--0.11 --0.75 --0-65 26/~ 

R index data (based on F2) 

.Rw t l -m 
No extinction Unsatisfactory refinement 
Isotropic 0.1090 739 
Type I 0.0974 734 
Type II 0.0967 734 
Type I (constr) 0.103 737 
Type II (constr) 0.103 737 

* Directions are along orthorhombic axes for constrained refinements. 

23 
132 (26) 

0 

-0.00107 (18) 
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to explain this anisotropy through the anisotropy of 
the crystal shape was made by using the numerical 
integration procedure developed by Hamilton (1963). 
This attempt led to a slight improvement, although a 
number of strong reflections remained poorly cor- 
rected. The strong reflections for both compounds were 
then recollected using very small crystals with volumes 
of 2 x 10 -4 ram3 and 13 x 10 -4 mm 3 for ~-DOX and 
~-POX respectively. Although extinction effects were 
effectively suppressed by this procedure the counting 
statistics were poor even for the stronger reflections, 
and little was gained from the additional experimental 
effort. 

Introduction of the anisotropic extinction finally led 
to a more acceptable refinement of the initial set of 
data. Some results, summarized in Tables 6 and 8, 
illustrate the strong anisotropy of the correction. All 
elements of the Z tensors (Type I) are essentially zero 
except for Z22, indicating that according to this inter- 
pretation the mosaic spread is very much smaller in 
planes with normals perpendicular to the b axis. The 
anisotropy of the extinction is slightly less pronounced 
for the neutron data on 0~-DOX, which were collected 
on an appreciably larger crystal (Coppens & Sabine, 
1969). The results given in Table 7 show that the larger 
crystal was more nearly perfect. Thus particle size 
varied between 1.4 and 3.0/z, compared with 0.4 and 

0.9p for the X-ray data on the same compound. This 
situation is analogous to that found for hydrazinium 
sulfate (described above). This effect is not surprising, 

ib  4 s e c  

/ 
NEUTRON, TYPE I 

• // 
:, i / ,/ 

NEUTRON, TYPE 

CON STRAIN ED 
GENERAL 

8;, 

X-RAY, TYPE II 

b 

c5 s#? 

l/// 

'\ 
' \ \  

NEUTRON, TYPET~ CONSTRAINED 

Fig.4. Extinction ellipsoids for hydrazinium sulfate. 

Table 5. Anisotropie extinction in hydrazinium sulfate (X-ray data) 

Crystal data: orthorhombic, a=8-251, b=9"159, c=5.532A 
Worst extinction: F,,bs2/Feale2 = 0"21, v = 0"054 mm3, 2 = 0.7107 A 

Type II extinction only 

0.585 (98) 
Wij' 

0.062 (11) 0.048 (7) -0"045 (31)  -0.062 (19) 0.022 (7) 
Principal axes and directions 

(r~) Direction cosines 
0.92/t 0.99 -0.09 -0.12 
2.72/t 0.13 0.85 0"51 
4.06/t 0"05 - 0.52 0.85 

R index data (based on F2) 
R Rw 

No extinction 0-1700 0.1607 
Isotropic 0.0760 0.0907 
Type II 0.0574 0.0876 

n-m 

2516 
2515 
2510 

a-BOX a-DOX a-DOX 

C----'-- ~a c.----- 1 8 ~c - -a  

a- POX I % b \,, 

c.------ a c.----- I 8 sec .a 

X-RAY, TYPE 'tl NEUTRON, TYPE 11 NEUTRON, TYPE I 

Fig. 5. Extinction ellipsoids for oxalic acid dihydrate. 
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because the larger crystals needed  for n e u t r o n  diffrac- 
t ion  are usually g rown more  slowly and  with more  care 
t han  the small  X-ray  crystals. I t  fol lows tha t  ex t inc t ion  
will of ten  be more  severe for  n e u t r o n  da ta  for  this rea- 
son, no t  only  because the p a t h  lengths  inside the crystal  
are longer .  

Ex t inc t ion  ell ipsoids are shown in Fig. 5. 

fl-Deuterooxalic acid dihydrate 
N e u t r o n  dif f ract ion da ta  on  this c o m p o u n d  were 

collected by Coppens  & Sabine (1969). The  results  o f  
the ex t inc t ion  ref inement  are given in Table  9. Extinc-  
t ion  is aga in  severe wi th  par t ic le  sizes comparab l e  wi th  
those  ob ta ined  for  0c-DOX. 

The  ex t inc t ion  ell ipsoids are reproduced  in Fig.5.  

Type I 

Type II 

Table  6. Anisotropic extinction in ~-perdeuterooxalic acid dihydrate (X-ray data) 

Crystal data: monoclinic a=6.150, b=3.612, c=  12.102 A, fl= 106038 ' 
Worst extinction: Fobs2/Fealc2 = 0"46, v = 0"0230 mm3 ; 2 = 0"7107/~ 

Z~ 1" 
11 22 33 12 13 23 

0"010 (10) 0"242 (16) 0"041 (18) 0"002 (7) 0"055 (14) 0'007 (11) 

Tensor is non-positive definite and cannot be diagonalized. 

Wij" 
4.1 (4) 16.0 (15) 4.3 (4) - 0 . 0  (7) -1 .9  (3) -0 .5  (7) 

Principal axes and directions 
(ri) Direction cosines 

0"39a -0"00 1.00 -0 .04 
0.74/z - 0.76 0"03 0.65 
0.90/2 +0"66 0"03 0"75 

R index data (based o n  F 2) 

Rw n-m 
Isotropic 0"046 490 
Type I 0.040 485 
Type II 0.039 485 

Type I 

Type II 

Table  7. Anisotropic extinction in a perdeutero oxalic acid dihydrate (neutron data) 

Crystal data: monoclinic, a=6.150, b=3.612, c=  12-102 A, ,8=106038 ' 
Worst extinction: Fobs2/Feale2 = 0"21 ; v = 3"3 mm3 ; 2 = 1.074 A. 

Z{j' 
11 22 33 12 13 23 

3-1 (4) 2.3 (2) 5.3 (9) -1 .3  (4) -1 .1  (9) 0.8 (4) 

Principal axes and directions 
(r/~) Direction cosines 

2.6" 0.21 - 0.25 - 0.95 
3.1" --0.76 0"56  --0.32 
5-1" -0.61 -0"79 0.07 

I4/ ~1" 
0-61 (6) 0"19 (3) 0"34 (4) -0"10 (5) --0"28 (6) --0"0 (4) 

Principal axes and directions 
<r~> Direction cosines 

1.38/, 0-95 - 0-21 - 0-25 
2"18p 0.08 -0.58 0.81 
2.99/t 0.31 0.79 0.63 

R index data (based on F2) 
Rw n-m 

Isotropic 0"045 868 
Type I 0.044 863 
Type II 0.044 863 
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The effect of extinction on the positional 
and temperature parameters 

The ex t inc t ion  effect in t roduces  relatively small errors 
in the  pos i t iona l  parameters .  The  b o n d  lengths  and  
angles for a -POX,  for example ,  did not  change  by m o r e  
t h a n  two s tandard  devia t ions  w h e n  the  27 value was 

reduced  f rom 19.5 to 2.8% th rough  the  appl ica t ion  of  
a n u m b e r  of  different ex t inc t ion  procedures .  At  the  
same t ime the accuracy of  the  pa ramete r s  increased 
cons iderably ;  s t andard  devia t ions  general ly decreased 
by a factor  3 (De lap lane  & Ibers, 1969). The  s i tua t ion  
is qui te  different,  however ,  for  the  t empera tu re  factor  
parameters .  The neu t ron  data  for bo th  c~-DOX and 

Type I 

Type II 

Table  8. Anisotropic extinction in c~-oxaltc acid dihydrate (X-ray data) 

Crystal data: a=6"119, b=3"607, c= 12"057/~, B = 106 ° 19' 
Worst extinction: Fobs2/Fc~le 2 = 0.38; v = 0.01856 mm3; ). = 0.7107 A 

Z~j' 
11 22 33 12 13 23 

-0.08 (1) 0.45 (3) 0-01 (3) -0-01 (1) 0.07 (2) 0-01 (2) 
Tensor is non-positive definite and cannot be diagonalized. 

H/'~j' 

11 22 33 12 13 23 
2"2 (2) 21.3 (2) 1"7 (2) -1-5 (7) 0"1 (1) -1"0 (8) 

Principal axes and directions 
(r~) Direction cosines 

0-33// --0"08 + 0 " 9 9  --0"08 
0.98// 0"73 -I-0"11 0"68 
1"36// -- 0"68 0"00 0-73 

R index data (based on F2) 
Rw n-m 

Isotropic 0.058 482 
Type I 0.044 477 
Type II 0.039 477 

Type I 

Type II 

Table  9. Anisotropic extinction in fl-deuterooxalic acid dihydrate (neutron data) 

Crystal data: monoclinic a = 10.02, b = 5.05, c = 5.15 A, fl = 99-27 o 
Worst extinction: Fobs2/Feale 2 = 0"20 ; v = 4"0 mm3 ; 2 = 1 "074 A 

Z'~j' 
11 22 33 12 13 23 

2-4 (5) 4.8 (9) 4.2 (4) 1.1 (7) -0 .2  (4) -1 .4  (4) 

Principal axes and directions 
(t/~) Direction cosines 
2.4" -0 .22 -0.81 +0.55 
3.0" - 0.45 - 0.42 - 0.79 
4.6" -0.87 +0.42 +0.28 

W~j' 
0"24 (4) 0"19 (3) 0"35 (5) -0"07 (3) -0-05 (3) -0"06 (2) 

Principal axes and directions 
( r0  Direction cosines 
1.76// -0 .14 +0.41 -0"90 
2.06// - 0-84 + 0.43 + 0.32 
3.09// -0 .52 -0.81 --0.29 

R index data (based on F) 
Rw n-m 

Type I 0.038 637 
Type II 0.039 637 
Isotopic 0-039 642 
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Table  10. R indices (%) 

Before extinction Isotropic 
R Rw R Rw 

~-POX, X-rays 
F 2 19.5 14.8 
F 

~-DOX, X-rays 
F 2 17.2 12.9 
F 

~-DOX, neutrons 
F 6-2* 

p-DOX, neutrons 
F 5"8* 

6"5 5"8 

4"1 4"6 

5"5* 4"4 4"5 

6"2* 4"0 3"9 

* Excludingstrongreflections. 

Anisotropic I Anisotropic 11 
R Rw R Rw 

3.6 4"4 2.8 3.9 
2.1 2"0 

2.5 4.0 2.8 3.9 
2.3 2.0 

4.3 4-4 4"3 4"4 

3"8 3.8 3.8 3.9 

f l -DOX were at  first subjected to a conven t iona l  re- 
f inement  in which  a large n u m b e r  of  s t rong reflections 
(abou t  100 in each case) were excluded.  The  R values 
appeared  acceptable  (Table 10). Af ter  the ex t inc t ion  
ref inement  had  been developed,  the results of  the two 
t rea tments  were compared ,  and  a large increase in the 
d iagona l  e lements  of  the the rmal  m o t i o n  tensors  was 
observed.  As can be seen in Tables  11 and  12 the in- 
crease is posit ive for  all the d iagonal  e lements  and  
typical ly  abou t  7%,  or  roughly  three s t andard  devia- 
t ions.  Therefore ,  a p rope r  a l lowance  for ex t inc t ion  is 
especially i m p o r t a n t  when  the the rma l  paramete rs  are 
to be used for the s tudy of  molecu la r  mot ion .  

I t  is of  interest  to note  tha t  the effect o f  ex t inc t ion  
on  least-squares paramete rs  is very similar  to the effect 
o f  uncor rec ted  abso rp t ion  (see for  example  Srivastava 
& Lingafel ter ,  1966). 

Table  11. ~-DOX. Temperature parameters with (E) 
and without (0) extinction refinement 

fill fl22 fl33 
C E 0"0163 (3) 0"0501 (9) 0"0036 

O 0"0146 (4) 0"0473 (14) 0"0032 
A +0"0017 +0-0028 +0"0004 

O(1) E 0-0223 (4) 0"0915 (15) 0"0034 
O 0"0204 (6) 0"0871 (23) 0"0031 
A +0"0019 +0"0044 +0"0003 

0(2) E 0"0217 (4) 0"0894 (15) 0"0043 
O 0"0199 (5) 0"0853 (24) 0"0038 
A +0"0018 +0"0041 +0"0005 

0(3) E 0"0222 (4) 0"0889 (15) 0"0042 
O 0"0210 (6) 0"0839 (23) 0"0038 
A +0.0012 +0.0050 +0"0004 

D(I) E 0.0260 (4) 0.0895 (16) 0.0047 
O 0.0252 (7) 0.0839 (24) 0.0045 
A +0.0008 +0.0056 +0.0002 

D(2) E 0.0287 (5) 0.1026 (17) 0.0055 
O 0.0272 (7) 0.0964 (25) 0.0051 
A +0"0015 +0"0062 +0"0004 

D(3) E 0.0294 (5) 0.1103 (19) 0.0089 
O 0.0278 (8) 0.1046 (30) 0.0086 
A +0"0016 +0"0057 +0"0003 

Average 
variation 6"7% 5"4% 8-2% 

Table  12. f l -DOX. Temperature parameters with (E) 
and without (0) extinction refinement 

fill fl22 fl33 
C E 0.0058 (1) 0.0241 (4) 0.0291 (4) 

O 0.0051 (1) 0.0213 (5) 0.0269 (5) 
A + 0"0007 + 0"0028 + 0"0022 

O(1) E 0.0077 (1) 0.0339 (5) 0.0467 (6) 
O 0.0072 (2) 0.0308 (7) 0.0449 (8) 
A +0.0005 +0.0031 +0.00]8 

0(2) E 0.0079 (1) 0.0339 (6) 0.0375 (5) 
O 0.0073 (2) 0.0311 (8) 0.0352 (7) 
A +0.0006 +0.0028 +0.0023 

0(3) E 0.0100 (2) 0.0503 (7) 0.0487 (7) 
O 0.0095 (2) 0.0468 (10) 0.0461 (9) 
A + 0.0005 + 0.0035 + 0.0026 

D(I) E 0.0084 (1) 0.0382 (6) 0.0461 (6) 
O 0.0081 (2) 0.0354 (8) 0.0433 (8) 
A +0.0003 +0.0028 +0.0028 

D(2) E 0.0120 (2) 0.0476 (7) 0.0398 (6) 
O 0.0113 (2) 0.0442 (9) 0.0368 (8) 
A + 0.0007 + 0.0034 + 0.0030 

D(3) E 0.0096 (1) 0.0411 (6) 0.0480 (6) 
O 0.0088 (2) 0.0375 (9) 0.0448 (9) 
A + 0.0008 + 0.0036 + 0.0032 

(1) Average 
(1) variation 7"0% 8"5% 6.2% 

(I) 
(I) Concluding remarks 

(1) In mos t  o f  the c o m p o u n d s  described here the R values 
(1) are very similar  for  the Type  I and  Type  II t rea tments .  

For tuna te ly ,  the pos i t iona l  and  t empera tu re  pa ram-  
(1) eters are equal  to  wi th in  one s t andard  dev ia t ion  for  
(1) the two t rea tments .  I t  is therefore  of  no  consequence  

for the s t ructural  analyses whe the r  Type  I or Type  II  
(1) is closer to reality. In m a n y  cases ex t inc t ion  will be 
(2) affected bo th  by mosa ic  spread and  part icle  size and  

nei ther  extreme will be ent irely correct .  Only  in the 
(1) X-ray s tudy of  e -POX can a clear choice be made  on  
(2) the basis o f  the R value a lone (Table  8), while the ~0 
(1) dependence  of  the intensi ty  of  the 202 and  101 reflec- 
(2) t ions of  BlzP2 can  only be expla ined  on  the basis o f  

mosaic  spread domina t ed  ext inct ion.  I t  would  be of  
considerable  interest  to compare  such conclus ions  wi th  
wavelength  dependence  measured  on  the same crystals. 

A C 26A - 6 
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Such measurements can also lead to a determination 
of the nature of the extinction (Zachariasen, 1968b). 

The parameters obtained with the present method 
are physically reasonable, although detailed compar- 
ison with other methods of determining crystal texture, 
to be performed on the same specimen, is desirable. 

We conclude that the significance of the extinction 
parameters in improving the agreement between ob- 
served and calculated structure factors is convincing. 
They should be included in least-squares refinement of 
extinction-affected data whenever accurate positional 
parameters and reliable temperature parameters are 
desired. 

We would like to thank several of our co-workers 
for supplying data discussed in the examples above. 
In particular, Sam J. LaPlaca carried out the entire 
extinction analysis for BlzP2. 
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Symbol table 
A(~) 1 P 

or A The absorption correction --  ~ exp (-/z(T1 
/) d 

+ Ta)dz. ea/mc 2 The X-ray scattering amplitude for a 
single electron in cm. 

D A unit vector with components Dt, perpendicu- 
lar to the plane of diffraction. 

F The structure factor in cm cell -1 for neutrons; 
in electrons cell -1 for X-rays. 

Fc The absolute calculated structure factor, not in- 
cluding a scale factor. 

Fx The scaled structure factor: Fk =kFc. 
g Isotropic extinction parameter or equivalent iso- A 

tropic extinction parameter as defined in Table 1. 
G Matrix of a space in which the vectors D and N 

are defined. 
I0 The intensity of the direct beam inside the crystal J 

in cm-Zsec -1. 
I The intensity of the scattered beam inside the 6~j 

crystal in cm-Zsec -1. 
~¢0 The intensity of the incident beam before it r/ 

strikes the crystal, cm-2sec-L 
k The scale factor, r/(D) 
K The polarization factor for the parallel compo- 

nent of polarization in the incident beam. 1 for 
neutrons, cos 2 20 for X-rays. 0 

N Unit vector with components N~, in the diffrac- 2 
tion plane and perpendicular to the incident A 
beam. /t 

Pl 1 + K, for unpolarized incident radiation, n 
pz 1 + K z, for unpolarized incident radiation, a(~) 
P Any parameter other than extinction or scale. 

Integrated intensity of a Bragg reflection in 
sec -1. dr 

P(e) Power of the diffracted beam in a particular 
direction e. ~o(a) 

~ Integrated intensity in the kinematic approxima- 
tion of a Bragg reflection, sec -1. ~,(A) 

Average scattering cross-section per unit volume 
of crystal, cm -1. 
Same as Q for K = 1. 
The radius of a spherical domain. 
The semi-length of a line through the center of 
an ellipsoid in a direction defined by N. 
Distance in the incident beam direction in a 
single domain, cm. 
Distance in the incident beam direction in the 
entire crystal, cm. 
Distance in the diffracted beam direction in a 
single domain, cm. 
Distance in the diffracted beam direction in the 
entire crystal, cm. 
Mean length of beam path in a single domain. 
Mean length of beam path in the entire crystal. 
Absorption-weighted mean length of beam path 
in the entire crystal. 
Volume of the crystal, cm 3 . 
Volume of the unit cell, 10-24cm3. 
A tensor with components Wt~ which describes 
the anisotropy of domain size. 
A dimensionless quantity giving average 
strength of scattering; defined in equation (12). 
A vector with components Xi. 
The extinction correction y = ~/9~k. 
A tensor with components Zij which describes 
the anisotropy of mosaic spread. 
A dimensionless quantity defined in equation 
(13). 
-= -2(pz/p1) (T/sin 20) ( ,~3 /V2)  cm -2 if F is in 
10 -12 cm cell-i; if F is in electrons, divide by 
12.593 = (eZ/mc2) -2. 
Angular deviation of the mosaic block position 
from the mean in an isotropic distribution, or 
magnitude of the deviation in a particular direc- 
tion for an anisotropic distribution. 
The least-squares estimated correction in a par- 
ameter. 
= 1 for i=j;  0 for i~ j .  
Direction of a diffracted beam. 
Mosaic spread parameter (standard deviation 
of a Gaussian distribution) radians. 
Mosaic spread parameter around a direction 
D when the Gaussian distribution is aniso- 
tropic. 
The Bragg angle. 
Wavelength of the radiation, 10 -8 cm. 
Eigenvalues of W or Z. 
The linear absorption coefficient in cm -1. 
The usual meaning. 
Cross section per unit volume and intensity, 
cm-1; analogous to Q but in a particular direc- 
tion ~. 
Differential for integration over all crystal vol- 
ume elements. 
Extinction correction for a single domain in a 
particular direction. 
Mosaic spread distribution function. 
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A Re-evaluation of Bonding Features in Diamond and Silicon 
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Published X-ray powder measurements on diamond and three different sets of published X-ray data 
on silicon have been re-analysed for bonding features using full-matrix least-squares refinement com- 
bined with a statistical analysis of the results obtained. In all cases a highly significant improvement 
in the fit between observed and calculated structure factors was obtained by introducing a tetrahedral 
distortion of the spherical 'prepared' charge distribution, but subsequent introduction of a fourth-order 
cubic distortion proved to be highly significant only for the diamond data and one set of the silicon 
data. Hartree-Fock calculations gave a better fit to the diamond measurements than calculations based 
on Hartree-Fock-Slater wave functions. The necessity for placing restrictions on the form of the radial 
functions associated with the non-spherical distortions, the large estimated standard deviations of the 
distortion parameters and the dependence of the parameter values on the set of basis wave functions 
chosen to describe the spherical 'prepared' charge distribution indicate the need for exercising caution 
in analysing the experimental measurements for bonding features. 

Introduction 

The diamond powder measurements of G6ttlicher & 
W61fel (1959) have recently been analysed for bonding 
features by Dawson (1967b) using a general structure 
factor formalism, Dawson (1967a). Similar bonding 
features in silicon have also been described by Dawson 
(1967c), who analysed the three different sets of X-ray 
data for silicon at present available]" in the literature, 
i.e. the powder measurements of G6ttlicher & W61fel 
(1959) and the perfect single-crystal measurements of 
DeMarco & Weiss (1965) and Hattori, Kuriyama, 
Katagawa & Kato (1965). 

Another approach, reported by Weiss (1964) and 
DeMarco & Weiss (1965), has also been used to analyse 
the X-ray data on diamond and silicon for bonding 
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I" Hart & Milne (1969) have recently reported the measure- 
ment of the 220 reflexion in silicon. However, their results have 
not been used here since they do not represent a complete set 
of data for silicon. 

features. The similarities and differences between this 
and the approach of Dawson (1967a) are discussed in 
detail by Dawson & Sanger (1967) where it is shown 
that only the latter's approach permits adequate inter- 
pretation of the experimental data. 

In the present paper the experimental measurements 
for diamond and silicon have been re-analysed for the 
features of bonding using the formalism of Dawson 
(1967a). However, this time the method of least squares 
has been used to determine the various parameters as- 
sociated with the non-spherical distortions of the spher- 
ical 'prepared' charge distribution and the significance 
tests of Hamilton (1964, 1965a) are applied before dis- 
cussing the bonding features in these compounds. 

Theory 

The space group of diamond is Fd3m (0  7) and the 
complete lattice may be built up from two atomic posi- 
tions with point group symmetry 43m (Ta) combined 
with the normal face-centred translations. 

Application of the formalism of Dawson (1967a) 
shows that, in the calculation of structure factors for 
the diamond lattice, allowance must be made for non- 
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